The Haujobb Amiga Framework

January 1, 2019

Abstract

If you want to code Amiga AGA demos, are able to program, but
don’t know how to get started on the Amiga, then this document is for
you. Also if you are already more experienced on Amiga and want to learn
about how we do our demos. This document describes how to set up and
use the Haujobb Amiga Framework on Amiga and PC. The framework
allows for prototyping, debugging, and timing effects natively on the PC
(currently Windows mainly, but Mac and Linux should work as well); and
then cross-compiling for the Amiga. We have used these exact codes and
workflows for our demo Beam Riders; and prior versions for Last Train to
Danzig and Prototype 1.

This document guides you through setting up the required components
in small steps with immediate incentives — leading up to a complete ex-
ample demo with timing done via the Rocket editor. To get started, first
read the guide to the document section to find your way around. Then
go and make a demo about it!

|
LI RESOUICET « « v v v v e e e e e e e e 4
(1.2 Quickstart (TL;:DR)[., 5
|
2.1 Includes from NDKI.o o000 5
22 vasmandvlinkl oL 6
2.3 Example: Wostest|o Lo oo 7
2.4 Assemblingon PC| o oo o000 8
2.5 Shared Folders between Amiga and PC| 9
|
B.1 vbccsetupon Amigal. 0oL oo 10
3.2 vbececsetupon PCl. o000 11
8.3 Example: Helloworld 12
|
4.1 Configuring make on Amigal, 13
4.2 Configuring makeon PC|. 14
|4.3 Building the WickedOS C2P-converters| 14
[E4 Cleaning withrm| 14
K41l On Amigal.« .. oL 15
HEA20nDPC. . 15
b.l Visual Studiolo 16
5.2 Qt Creator] e 16
|5.3 Debugger (CDB)| v oo oo e 17
.4 KitSetup 17
BS _AddOnd.« o oo 18
5.5.1 Syntax Highlighting tfor M68000 Assembly|. 19
B52 Qt Plug-In for Visual Studio] 19
B.53 Symbol Files| 20
|
|
6.1 Hello World| o o 21
611 Overview| e 21
6.1.2 Discussion|. e 21
B2 Stard 21

6.2.2 Discussion|. L 22
6.2.3 Compile for and run on Amigal 24
6.3 Picturel. e 24
631 Overview| e 25
6.3.2 Discussion|. o o 25
6.3.3 Changing the palette|. 26
6.4 Movetablel o o 27
6.41 Overview| 27
6.42 Discussion|. o oo e 28
|
[c.1 Hello Demol o 29
L1l Overview| o v 29
FI2 SYNC PLAYER]. 29
(13 Good Practice Track Namesl. 30
(.2 Rocket Editorfo oo 31
[7.2.1 Using the Editor| 32
7.3 Wiring up your variables to Rocket| 32
31 Declarationd. o 32
7.3.2 sync get track()] Lo 33
|E.3.3 sync get val()|. oo 34
[7.3.4 Passing variables to an effect] 34
(.4 Common Effect Functionsl 35
[(.o Common Demo Functionsl 35
7.5.1 drawDemo()] o 36
|7.5.2 updateDemo()| Lo 37
1
——1
8.1 Frameworklo 38
8.2 Third party code| Lo 38
................................ 39
L |
[0.T Missing Standard Headers| 39
1
[10.1 Built-Tn Testl o oo 39
10.1.1 With ASM-Onel. oo 000000 39
110.1.2 With Devpac| oo o oo 41
0 R Dl . o e e e e e e e e e e e e e e e e e 41
[10.2 list of Screenmodeslo Lo 41
110.3 How to add a new screenmode| 42

The Haujobb Amiga Framework facilitates modern Amiga demo making on
several levels.

On its lowest level, WickedOS, it provides with you with an API for assembly-
level access to over 20 different chunky to planar based screenmodes, several
music replayers, and interrupt hooks. You can choose from using a multi-
tasking-friendly hardware abstraction layer, or a traditional multi-tasking-killer
mode. WickedOS has been used in a number of our Amiga demos, ranging from

to . By default it targets “todays” 68060 AGA demos,
i.e. having an FPU and at least a 68020 or better CPU in the target machine.

On a higher level, the framework allows you to mix assembler and C-code.
Furthermore, it provides you with a reimplementation of the WickedOS-API in
Qt, This allows for developing and debugging effects natively on the PC, before
cross-compiling (and further optimizing) them for the Amiga.

This document tries to document to entire framework, which includes working
on the PC and well as on the Amiga (with different tools).

If you just wanted to have a quick start on your PC, read the Quickstart
section on the following page.

If you also wanted to set up assembler, C-compiler and linker on the Amiga,
start reading at that chapter on the next page. Please note that albeit those
tools work perfectly fine on Amiga, we are not supporting them fully with our
makefiles.

If you were really curious and also wanted to play around with WickedOS us-
ing Asm-One and Devpac, you could read the corresponding section on page [39]
in the annex.

In any case, once you installed the assembler, compiler, linker and make
tools, you should first check out the Hello World example on page before
following the rest of the examples, which are described in Part II of this docu-
ment, starting on page [21]

The complete sources are available at https://github.com /leifo/haujobb-amiga.
The documentation is hosted at http://www.dig-id.de/amiga/framework /, PDF-
version at http://www.dig-id.de/amiga/framework /haf.pdf.

https://github.com/leifo/haujobb-amiga
http://www.dig-id.de/amiga/framework/
http://www.dig-id.de/amiga/framework/haf.pdf

The Haujobb Amiga Framework supports development of Amiga demos on PC,
and then cross-compiling them for the Amiga.You probably didn’t want to com-
pile and assemble on the Amiga anyway, so you just:

set up the vbcc cross-compiler for Windows using Install-VBCC.exe (to
c:\vbec), as described on page

you could then to the root folder and type
to build the whole Amiga side from scratch

set up a shared folder on your PC or NAS that could be reached from
your real or emulated Amiga, as described on page [9]

installed Visual Studio, at least 2010, but probably the latest 2017 Com-
munity edition, as described on page

installed Qt5, Qt Creator, and cdb debugger support, as described on
page [16]

and then double-checked that compiler, debugger, and Qt version were
correctly set up as a , as described on page

This is all that needed to be done, so you could now open our supplied example

project files (*.pro) in the folder and start making Amiga demos on PC.
If you find any issues, please report them on |GitHub.
Enjoy!

Traditionally, many Amiga-demos were made using ASM-One, or one of its
derivates. I have personally worked with ASM-One v1.29 for many years, and
demos like Mnemonics were made almost exclusively with that assembler, while
other parts relied on genam from the Devpac 3.04 package. To honor that
tradition, WickedOS stays fully compatible with ASM-One and Devpac. But,
more importantly, it can also be used with tools like vasm and vlink, both
natively on the Amiga, and for cross-compiling on the PC.

This setup chapter will take you on a quick tour through the different com-
ponents that are required to get you up and running step by step.

To get started, grab the release archive of our framework from GitHub at
https:/ /github.com /leifo /haujobb-amiga.

First of all, you need to have the assembler include-files available at “INCLUDES:”.
WickedOS doesn’t need the latest features of AmigaOS, so it is likely to work
with the includes that you might already have. If not, do as follows.

http://server.owl.de/~frank/vbcc/2017-05-18/Install-VBCC.exe
https://github.com/leifo/haujobb-amiga/issues
https://github.com/leifo/haujobb-amiga

Obtain a copy of the latest AmigaOS Native Developer Kit (NDK). At the
time of writing this was version 3.9 and it was still available at www.haage-
partner.de/download /AmigaOS/NDK39.lha,

1. Unpack the archive on your Amiga
2. Assign “INCLUDES:” <whereYouUnpackedIt>/Include/include i
3. List includes:hardware/custom.i (should list a file, mine is 3045 bytes long)

4. Consider putting the assign from line 2 into s:user-startup (optional, but
you must provide the assign to INCLUDES: if you plan to assemble Wicke-
dOS on Amiga).

We can now use to assemble the WickedOS source into a linkable bi-
nary object (.0) file, and then link that into an executable file using
These portable command-line tools are at the core of our strategy for cross-
development, together with vmake and vbcc, which will be covered later in this
document.

The project homepages are at http://sun.hasenbraten.de/vasm/and

http://sun.hasenbraten.de/vlink/. You can get the binaries, sources, as well
as complete documentation for both tools at their respective homepages.

The supplied WickedOS source assembles out of the box on Amiga and PC.
The following sections show you how to do it.

To assembe on the Amiga, get the latest release binaries from

http://sun.hasenbraten.de/vasm /bin/rel/vasmm68k _mot_o0s3.lha
and |http://sun.hasenbraten.de/vlink/bin/rel/vlink _ AmigaM68k.lha

Copy the contained files vasmm68k mot and vlink to your path (e.g. to “C:”).
Confirm that they are working by typing:

vlink -v
vasmm68k mot

The output version numbers should somehow match those that are mentioned
on the project homepages. Note that vasm is not only portable, i.e. ready to
make work on different plattforms, but also retargetable, i.e. able to assemble
sources for different target CPUs with different syntax modules. Shortcodes
for the latter two are automatically appended to the binary executable name.
Although many different versions of vasm exist, we are only interested in the
68k _mot version. If you are like me and like shorter names, you can add “alias
vasm vasmm68k mot” to your s:user-startup to make your life a little bit easier
once in a while.

http://www.haage-partner.de/download/AmigaOS/NDK39.lha
http://www.haage-partner.de/download/AmigaOS/NDK39.lha
http://sun.hasenbraten.de/vasm/
http://sun.hasenbraten.de/vlink/
http://sun.hasenbraten.de/vasm/bin/rel/vasmm68k_mot_os3.lha
http://sun.hasenbraten.de/vlink/bin/rel/vlink_AmigaM68k.lha

Figure 2.1: Wostest assembled on Amiga, output

With vasm and vlink in place, you can already assemble, link and execute the
built-in example like this:

1. ¢d WOS:
2. execute buildwostest.bat
3. wostest

This procedure should build and run an example screen. See the screenshot for
a typical output of the shell and of

vasm and vlink are called from buildwostest.bat, which contains only two
lines. Let’s look at them in more detail:

The vasm-line specifies a number of things about our source and target binary
via these parameters:

-F: the output format should be (Amiga) hunk

-m68020/m68882: the source contains 68020 CPU and 68882 FPU com-
mands (this defines the base-level and is also okay if we really want to
target 68060)

-0: the assembled file should be written to a linkable object named wostest.o

-D: Define a flag (here “WTEST”, which causes the conditional-assembly
of the built-in example)

-I: additional Include path at “c:/vbee/targets/NDK39/Include/include_i”
(as created by the Windows installer, c.f. on page [LT])

B Eingabeaufforderung - o %

Figure 2.2: Wostest assembled on PC

Note that this path is searched first, but not found on Amiga, since
it is a PC-style path, and thus disregarded silently.

vasm thus falls back to using the “incdir INCLUDES:” directives that
are contained in the source.

if you preferred, you could actually remove the assign INCLUDES:
and point to the corresponding directory via the -I parameter.

Finally, the vlink-line takes the output-file generated by vasm, wostest.o, and
turns it into an executable file,

Windows binaries of vasm, vlink and make are shipped together with the vbce-
compiler which can be obtained from http://sun.hasenbraten.de/vbcc/

Download and run Install-VBCC.exe, as decribed on page [11]in more detail.
Please skip to that page. Then come back and confirm that the tools are working
by opening a command prompt and typing;:

vlink -v

vasmm68k mot
With vasmm68k mot and vlink in place, you can then just:
1. cd (here: t:\wos)
2. type “buildwostest.bat” to cross-assemble and link on the PC

Note that the binary output produced on the PC is exactly the same as on the
Amiga, of course. Also note that this worked in a fraction of the time that it
took on the Amiga. Yes, it was really . Welcome to Modern Amiga
Demo Cross-Development!

http://sun.hasenbraten.de/vbcc/
http://server.owl.de/~frank/vbcc/2017-05-18/Install-VBCC.exe

Now that you cross-compiled an Amiga executable blazingly fast on your PC,
you wouldn’t want to waste any time getting it onto your Amiga for testing it,
would you? So manual file-copying via FTP, CF-cards, or by other means is not
going to be fast enough for quick turn-around times. Your ideal setup depends
on whether you want to work with emulated or real Amigas, or both.

like WinUAE allow adding a folder from the host-computer as a
volume on the emulated Amiga. Do yourself a favour and use this feature!
I personally mounted a volume “WIP:” (as in Work In Progress) from a folder
that I mounted from a Network Attached Storage (NAS, a Synology here) on
the PC. This is because...

cannot just mount your Windows folders. NAS folders, on
the other hand, are made to be mountable, and can also easily be mounted on
Amigas that have:

some Fast-RAM
a TCP/IP stack, like AmiTCP, Genesis, Miami, or Roadshow

a SMB file system client like smbfs (try |Aminet, although the version 1.74
hosted there is currently horribly outdated)

I am using Roadshow and just had to add the following line to
s:Network-Startup

are a fact. Yes, they do exist! Even though they are not
shipped as part of the Windows operating system, like on Amiga, you can easily
download and install very powerful third-party components. And PC-based
Ramdisks are just as useful as they have always been on Amigas. This is what
I did:

1. Download and install ImDisk Virtual Disk Driver

2. Configure a Drive Letter “T:” with a 2 GB RamDisk using File System
“NTFS”

by N1

(a) check: “Allocate Memory Dynamically”, “Launch at Windows Startup”
(b) uncheck: “Create TEMP Folder”

3. Mount that folder as “PCT:” in WinUAE (very useful for quick data ex-
change, esp. downloads)

http://aminet.net/package/comm/tcp/smbfs-68k
http://www.ltr-data.se/opencode.html/#ImDisk

When planning to develop Amiga software with the C programming language,
there are a number of C-Compilers to choose from. Most notably they are:

SAS/C|, which is Amiga standard programming environment (com-
mercial and deprecated)

GCC, which is cross-plattform standard (free and open source)

Storm C, an Amiga programming environment based on an old version of
GCC (commercial)

DICE, which was a popular and inexpensive Amiga programming envi-
ronment (recently open sourced)

vbec, which is an actively maintained cross-plattform compiler (free and
open source)

As we were looking for a cross-compiling solution, SAS/C, Storm C and DICE
were no options. They are also neither free and open source, nor actively main-
tained, which was our second selection-criteria. This left us to decide between
GCC and vbce. At the time when we made our decision in 2009/2010, the
Amiga-port of GCC was lacking behind in version numbers, while vbce was the
relatively new thing that was used by several Amiga-coders, and personally rec-
ommended by Kalms of TBL. It also allows for writing inline-assembly in the
familiar Motoral syntax, rather than the more alien GCC Assembler syntax.

Moreover, vbec is designed to work in combination with vasm and vlink
from the same authors. The maintainer of the Amiga bindings, Frank Wille, is
one of the most experienced and longest standing developers of quality Amiga
development tools, ranging back to at least 1991 (with his PhxAssand PxhLnk).
This long-term experience and continued commitment ensures first class Amiga
support.

Hence, we decided to use vbcc as our C-compiler. The vbce project home-
page is located at http://sun.hasenbraten.de/vbcc/. There you can get the
binaries, targets, sources, and complete documentation.

Installation on Amiga is easy. Citing the vbce download instructions!

You need to pick the appropriate binary archive for your host
platform. Then you can add as many target archives as you need. [..]
Install the binary archive first, using the provided Amiga installer,
then add the targets.

So, download and install:

1. |AmigaOS 2.x/3.x 68020+ binaries

10

http://www.pjhutchison.org/tutorial/sas_c.html
https://github.com/bebbo/amiga-gcc
http://www.haage-partner.de/amiga/storm/sc_e.htm
http://aminet.net/package/dev/c/dice-3.16
http://sun.hasenbraten.de/vbcc/
http://royal.owl.de/~frank/phxass.html
http://royal.owl.de/~frank/phxlnk.html
http://sun.hasenbraten.de/vbcc/
http://sun.hasenbraten.de/vbcc/index.php%3Fview%3Ddownload
http://server.owl.de/~frank/vbcc/current/vbcc_bin_amigaos68k.lha

2. (Compiler target AmigaOS 2.x/3.x M680x0

The archives contain standard Amiga Installer scripts. Run them. Then test if
the following commands are available:

1. vc
2. vbecem68k

The former is a frontend for the latter and is very handy, if you are planning to
use the C-compiler on the Amiga..

Installation on PC is even easier. Basically, just download and install a single
file from the|vbcc homepage. But be aware that the download is falsely reported
to be a infected by malware by several virus scanners! Therefore:

1. Disable your virus-checker (optional)
2. Download and install Install-VBCC.exe with these settings

(a) Leave “Default compiler target” as
(b) Change path (below) to C:\vbce

VBCC Installer — *

This program will install the following softwares:

Vbee 0.5
Wasm 1.8
Vink 0.16
GNU Make 4.2
Amiga0S NDK 3.9

Default compiler target | Amiga05 2.0

C:whee

vbee is copyright in 1995-2017 by Volker Barthelmann.

This archive may be redistributed without modifications and used for
non-commercial purposes.

An exception for commercial usage is granted, provided that the target CPU
is MB&8k and the target OS5 is Amiga05. Resulting binaries may be distributed
commercially without further licensing.

In all other cases you need my written consent. This copyright applies
to ve, vbee and vsc.

[v |accept the license agreements Install | Exit |

Figure 3.1: VBCC Installer for Windows

3. Enable your virus-checker again. If your were curious about this installer,
you could:

11

http://server.owl.de/~frank/vbcc/current/vbcc_target_m68k-amigaos.lha
http://sun.hasenbraten.de/vbcc/index.php
http://server.owl.de/~frank/vbcc/2017-05-18/Install-VBCC.exe

(a) check the sources at GitHub

(b) follow the thread Windows installer for VBCC tool chain at the En-
glish Amiga Board

(c) or believe us that it is fine.

The good news is that you are already done! Open a new command prompt
and test that the following commands are available:

1. ve

2. vbcem68k

3. vasmm68k mot
4. vlink

5. make

Let’s compile our first C-source with this setup! The following procedure should
work on the Amiga aas well as on the PC side.

1. cd to the /demo/helloworld folder
2. vc hello.c

(a) this should generate an Amiga executable “a.out”

(b) alternatively provide a filename with: vc hello.c -o hello
3. Run the freshly compiled executable on Amiga.

For completeness, this is the full source of hello.c

12

https://github.com/leffmann/vbcc-windows
http://eab.abime.net/showthread.php%3Ft%3D83113

This is slightly extended hello world that also makes use of the provided argu-
ments (i.e. argc and argv). You can also build the binary by executing build.bat.
This example also comes with a simple makefile. But in order to build it from
there, you first have to install make itself.

While using batch-files for scripting repetetive tasks is useful, you are quickly
hitting the roof with that approach. Which files need to be built, and how?
This is where makefiles and make come into play. They coordinate the software
build process in a structured way. Required tools, source-files, and libraries are
listed in the makefile. Based on the rules that are also noted in the makefile,
the make-tool then coordinates the build-process, i.e. turning source-code into
an executable file.

We are using GNU make for building the Amiga target, as it is a free standard
tool that is available on both Amiga and current plattforms. It is your choice
to install it on Amiga and/or PC. The forthfollowing test should run on both
platforms.

1. Get anative Amiga binary from: http://aminet.net/package/dev/c/make-
3.75-bin and put it to your path

(a) Please note that the v3.75 from Aminet is in fact a v3.74 ported
natively for Amiga. The author just bumped the version number for
his efforts.

(b) Open a newshell and type “make -v” to check that make is working

i. it should show you its version number.

13

http://aminet.net/package/dev/c/make-3.75-bin
http://aminet.net/package/dev/c/make-3.75-bin

ii. In case you get a stack overflow warning type “stack 20000” and
try again

1. Make is bundled and installed with Install-VBCC.exe, as described on
page (v4.2.90 at the time of writing). Thus you should have already
installed it.

(a) This is the preferred version

(b) Alternatively, older Windows binaries can be obtained from:
http://gnuwin32.sourceforge.net/packages/make.htm

2. Open a command prompt and type “make -v” to check that it is working

(a) make should show you its version number.

Building the WickedOS C2P-converters

We are aiming to use make on both Amiga and PC. Test that it works for you
in two steps:

1. Use it to assemble a bunch of real world assembler files with a given
makefile

(a) cd to /sub
(b) make

This should call vasm on about two dozen assembly-files from the /chunky
subfolder and generate the same number of *.bin files. These files are the actual
chunky to planar (C2P) converters for WickedOS’ different screenmodes. If the
distribution archive came only with one bin-file (for screenmode #1, as used in
the initial example), you have now enabled the rest of them. Congratulations,
well done!

After work comes the clean-up! For make this is “make clean” which usually
deletes a bunch of assembled or compiled binary object files and needs a delete
command in order to work. Unfortunately, these delete commands differ be-
tween operating systems, not only by name, but also by syntax. In order to
keep at least a somehow coherent structure, we define as per convention that a
command “rm” should be reachable and work like rm from GNU coreutils.

14

http://server.owl.de/~frank/vbcc/2017-05-18/Install-VBCC.exe
http://gnuwin32.sourceforge.net/packages/make.htm

Just add another line to s:user-startup: “alias rm delete”. Please note that this
is not ideal but will work reasonably well for small projects, as long as the
command-line does not get too long. Unfortunately, the command-line of the
C2P-converter example with over 20 entries is already exceeding those limits.
Mea culpa!

Windows del is not good enough for our purposes! Therefore we are using rm
from GNU coreutils, a.k.a. fileutils.

1. Get the latest binaries from
http://gnuwin32.sourceforge.net /packages/coreutils.htm

(a) either choose the setup file, or just the binary.zip

2. At your discretion, install all the tools, or just copy rm.exe from the bin-
folder in the zip-file to your path
(a) it is suggested to copy rm to c:\vbcc\bin
(b) in case you choose the file from the zip-file, add missing dependencies
from |coreutils-dep-zip
3. Open a command prompt and type “rm --help” to check if it is working

4. Finally, try it in combination with make

(a) cd to the /sub directory again

(b) type “make” and it should tell you “Nothing to be done for ‘all” which
means that all assembled filed were up-to-date.

(c) type “make clean” to remove those files

(d) type “make” again and see it rebuild.

This concludes the setup of the Amiga-oriented tools.

A large part of the productivity-benefits of our toolchain stem from the use
of a native PC-build while prototyping the effects and editing the demo. This
takes cross-compilation out of the picture for a period of time and allows you
to focus on getting something on screen, debugging it, and then making it
look nice before focussing again on making it all run smoothly on the Amiga.
It also allows you to exploit the PC-hardware that you own anyway for your
own sanity, e.g. use your big monitor wisely and fill it with a modern IDE
with syntax-coloring, code-completion, code-navigation, project support, and

15

http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://gnuwin32.sourceforge.net/downlinks/coreutils-dep-zip.php

of course debugging facilities. And run all of this natively on your modern
multi-core CPU to save time and keep you in the flow.

For this to work you need a compiler, an IDE, and a debugger. While
in theory these components would all be included in the popular Microsoft
Visual Studio, we have blended it in our toolchain with QtCreator as the IDE
component. While this was mainly a simple personal preference for a nice IDE
that can work with different compilers, it also kept our toolchain itself plattform
independant! QtCreator is available for Windows, macOS, and Linux. For the
latter two, you would be able to set it up with gcc. For Windows, you best use
it in combination with Microsoft’s compiler.

Let’s start with installing Microsoft Visual Studio (MSVC), which comes in
many different versions over the years (see table). The oldest one that we have
personally tested is 2010. If you already have Visual Studio installed in a least
that version, you can skip this section.

[Visual Studio [2010 [2012 | 2013 | 2015 [2017 |
Pro OK | not tested OK not tested | not tested
Community - - not tested OK OK

Table 1: Supported Microsoft Visual Studio versions

While Visual Studio was, and still is, a full-price commercial product, Mi-
crosoft has launched a number of free (as in beer) editions over the years. The
Express edition introduced in 2005 has long since been discontinued and is now
superseded by the Community edition. Visual Studio Community 2017 will
work well for us. Please download it from |https://visualstudio.microsoft.com
and then install it on your Windows machine.

With Visual Studio Community 2017, please also install the missing standard
headers by selecting under

, as described (9.1).

Now let’t install Qt and Qt Creator. The Haujobb Amiga Framework is known
to work with Qt4 and Visual Studio 2010 as the minimum supported versions. If
you haven’t got Qt installed already, head over to https://www.qt.io/download,
get the Open Source edition installer for Qt5, and run it.

It features many different options, we don’t need all of them. Just install the
latest available Qt 5.x.y release, as well as QtCreator and CDB support from
the tools section (see figure .

Please note that the version numbers in the figure will change quickly and
are already outdated at the time of writing. The figure also shows a setup
wizard that was run on a machine with MSVC 2015 32-bit. You will need to

16

https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://visualstudio.microsoft.com
https://www.qt.io/download

« Ot Einrichtung <« Qt Einrichtung

Komponenten auswahlen Komponenten auswahlen

Bitte wahlen Sie die Komponenten aus, die Sie instalieren méchten, Bitte wahlen Sie die Komponenten aus, die Sie instalieren méchten
Preview ‘~| Qt 5.11.2 Prebuit Companents for MSVC O aes.14 | 5,112 Prebuit Components for MSVC

2015 32-bit 2015 32-bit

voa Oatsio

v Diese Komponente wird ungefahr 468,72 Diese Komponente wird Ungefahr 468,72
Ll 5,\;,;\,2(T M8 auf Tnrer Festplatte belegen. o % TQ;S‘SD 2 MB auf Threr Festplatte belegen.

L] MSVC 2015 64-bit
[MSVC 2017 64-bit
[0 MinGW 5.3.0 32 bit
[uWe ARML7 (msvC 205"

Qt Creator 47.2

Qt Creator 4.7.2 CDB Debugger Support
O ot 3D Studio 2.1.0

[Gt 30 Studio Runtime 2.0.0 for Gt 5.11.0

L] WP x54 (MSVC 2015) [Qt 3D Studic Runtime 2.1.0 for Qt 5.11.2

L] uw x36 (MSVC 2015) [MinGW 4.9.2

[uwP ARMVT (MSVC 2017) O MinGW 49.1

[UWP x54 (MSVC 2017) [MinGW 482

L] UWP x26 (MSVC2017) [MinGW 5.3.0

[Android 86 [MinGW 7.3.0 64 bit

[Android ARMy7 O MinGW 4.8

[Sources [Gt Installer Framework 2.0

[Gt Charts. [Gt Installer Framewerk 2.0

[0t Data Visualization v [MinGw 4.7 v
< o > < >

Stendard | |Ale augwahien | |Alle swéhien Standard | |Alle augwahlen| |Alle abwahlen
v et

Figure 5.1: Required Components from Qt Open Source Installer

pick the version that fits your installed compiler. It is your choice, to install
32-bit or 64-bit version (if available). The default path for installation if C:\Qt.
The official documentation for Qt Creator is at http://doc.qt.io/qtcreator/.

If you want to debug your C-programs in Qt Creator, you need to setup the
CDB debugger. The official documentation for this is here. It boils down
to downloading the Windows SDK from https://developer.microsoft.com /de-
de/windows/downloads/windows-10-sdk. Then run the installer and uncheck
everything except “Debugging Tools for Windows” (see figure [5.2).

In Qt Creator, combinations of compiler, debugger, Qt version, and a few other
things are called a

We need such a kit in order to work with our supplied project files (stars.pro,
etc.). The full Qt doc for this is at http://doc.qt.io/qtcreator/creator-configuring-
projects.htmll

When you installed compiler, debugger and Qt as described above, go to
menu Tools->Options. The presented options windows should resemble figure
(note that it has been taken with an older Windows SDK installed).

Select on the left pane. Then:

check under that your installed Qt Version got auto-detected.
If not, configure it manually.

check under that two versions of cdb.exe (32/64-bit) were found
in the Windows Kits folder.

17

http://doc.qt.io/qtcreator/
http://doc.qt.io/qtcreator/creator-debugger-engines.html#debugging-tools-for-windows
https://developer.microsoft.com/de-de/windows/downloads/windows-10-sdk
https://developer.microsoft.com/de-de/windows/downloads/windows-10-sdk
http://doc.qt.io/qtcreator/creator-configuring-projects.html
http://doc.qt.io/qtcreator/creator-configuring-projects.html

ﬁ Windows Software Development Kit - Windows 10.0.17763.132 - X

Select the features you want to install

Click a feature name for more information.

[l windows Perfarmance Toalkit Debugging Tools for Windows
Debugging Tools for Windows Size: 436,2 MB
[[] Application verifier For Windows Kernel and user-mode debuggers as well as help and tips

D .MET Framework 4.7.2 Software Development Kit for using Debugging Tools for Windaws.

D ‘Windows App Certification Kit

[] windows 1P Qver USB

[msi Taols

|:| Windows SDK Signing Tools for Desktop Apps
[] windows SDK for UWP Managed Apps

|:| Windows SDK for UWP C++ Apps

D Windows SDK for UWP Apps Localization

|:| Windows SDK for Desktop C++ %86 Apps

D ‘Windows SDK for Desktop C++ amd&4 Apps

[] windows SDK for Desktop C++ arm Apps Estimated disk space required: 436,2 MB
|:|Wirdows SDK for Desktop C++ armé4 Apps Disk space available: 83GB
| Back | | G Install | | Cancel |

Figure 5.2: Debugging Tools for Windows from Windows SDK

check under that the Visual C++ compiler was correctly auto-
detected. Note that the list will usually show several versions ending on
something like “(amd64 x86)” meaning that this would be running on
a 64-bit machine and generating code for a 32-bit machine. It usually
doesn’t matter to our framework if you are selecting a 32-bit version or
not, as we are not going anywhere near the 32-bit limits, anyway.

check under that you have an auto-detected kit comprising of a
, a ,and a

close the Options window, and you should be able to build & run, as well
as to debug.

keep in mind that sometimes you want to

run gqmake by right-clicking root-element of a project-tree and select-
ing
and then selecting

This section contains a few useful add-ons. Install them at your own discretion.

18

& Options X

Location

=]

[}

S & X m

Qt Quick

VoA

&Run

Mmoo\ &

Environment:

m 5

==
=

Figure 5.3: Compiler-, Debugger-, and Kit-Settings in Qt Creator 4.7

This is really handy if you often work with M68000 assembly files in Qt Creator.
Get lasm-m68k.xml and install it. The documentation of in
Qt Creator, as described in http://doc.qt.io/qtcreator/creator-highlighting.html
should serve you as a basis. On my machine, I just copied the file to the

(here: C:\QtSdk\Tools\QtCreator\share\qtcreator\generic-
highlighter).

If you’d like to use our supplied Qt Creator Project files (*.pro) from within
Visual Studio, you can install the as described |in this
blog-postand provided here(for 2015) and here(for 2017). You can also install
it via the of Visual Studio.

19

https://github.com/ricardodovalle/config-qtcreator/blob/master/qtcreator/generic-highlighter/asm-m68k.xml
http://doc.qt.io/qtcreator/creator-highlighting.html
https://blogs.msdn.microsoft.com/vcblog/2017/04/14/bring-your-existing-qt-projects-to-visual-studio/
https://blogs.msdn.microsoft.com/vcblog/2017/04/14/bring-your-existing-qt-projects-to-visual-studio/
https://marketplace.visualstudio.com/items%3FitemName%3DTheQtCompany.QtVisualStudioTools2015
https://marketplace.visualstudio.com/items%3FitemName%3DTheQtCompany.QtVisualStudioTools-19123

Once installed:
1. Select menu

(a) add your Qt version

i. the name is automatically provided
ii. just select the path that leads to /bin/qmake under c:\Qt
iii. this only works for Qt5 and up

2. Select menu
3. Build & Run

Please note that our IDE of choice is Qt Creator, so if you run into problems
with Visual Studio, we would be more happy to hear about your solutions, and
less prepared to help you fix it.

Even though you have already installed a lot of data, the symbol files have not
been part of it. They would usually be loaded on demand over the Internet
connection and then cached locally. If you want to prepare yourself for longer
times without Internet, get the symbol files. You can read more about this topic
in thisl article. We also have a direct download link somewhere and will add it
here at some point.

20

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-symbols

This chapter takes you through the provided examples in order of complexity.

Let’s start with a simple hello world. We just want to build and run it from
within Qt Creator to confirm that everything works.

Open Qt Creator
Select menu

Open from the folder
alternatively, you can also double-click on a project (*.pro) file in
Windows Explorer

Upon first start of a project in Qt Creator, select your previously config-
ured kit and press

Select menu

You should be presented with a console window and some printed text.

It couldn’t get much simpler than this. Basically, just a couple of printf()’s,
which require stdio.h. If compilation fails for you on that header file, solve the
issue now, as described on page

The example also shows the use of parameters that are provided to

, with being the argument count, the

filename, and the supplied arguments, if >1.
Finally, the project also showcases the need for a shadow-build-subdirectory
(such as), as Qt Creator calls gmake which creates its own “makefile™

file and thereby overwrites our existing “makefile” in GNU make syntax (9.1)),
which we need to build for Amiga. All further examples will thus employ a
folder for the Amiga-specific build files.

Just a classic star-field.

21

cRFoEE/ a@®s@®vEE <

Figure 6.1: Qt Creator session with project stars

Open, configure, build and run from the folder

You should be presented with a graphics window and some shaded 3D stars
flying towards you, as show in figure [6.1

This example does not load any external files. The starfield is set up and drawn

from a seperate file called starseffect.c (with fitting header starseffect.h) which

is then called from main.c. Keeping the effect-code seperated like this is good

practice and will become very useful once we start putting together a demo.
Let’s study the code in figure [6.1tarting from main():

initDemo() is called first thing

this declares screensize global variables xres=320 and yres=180
it allocates memory for a screenBuffer (also global variable)
and calls starsInit()

this is obviously our effect init-code
made known via in line 2

starsInit() is not entirely shown in the figure

it calculates quasi random 3D star-coordinates
and calculates a palette

22

wosInit() is called next

this sets up the graphics display amongst other things, and might
potentially disable multi-tasking on the Amiga (depending in wether
or not wickedquicklink.s / wickedlink.s have been assembled with or
without the flag.)

wosInit() does not immediately return, but

hands over control to mainDemo()
only returns to main() once the demo is over

mainDemo()

wosSetMode(8, screenBuffer, starsPalette(), 256);

sets up a low-res 320x180 screenmode (#8)
fed from screenBuffer
with colours from starsPalette() at normal brigthness (256)

on Amiga

mainDemo() then loops over drawDemo(), providing time as
ticks (1/50 s)
until wosCheckExit() returns =0

on PC (WIN32)

mainDemo() immediately returns
and drawDemo(time) is called from somewhere else from Qt

(this is why there is this block)
drawDemo() just

renders the stars effect based on the given time
updated the display with wosDisplay(2);

the 2 denotes a lock to 25 fps maximum

which is realistic for low-res chunky to planar effects on AGA /060
config

motion will look smoother at a constant framerate rather than a
slightly faster on

you could try (1) for a maximum 50 fps frame-lock or (0) for no
lock

starsRender()

clears the screenBuffer
calls starsDraw(), with
time
32 as a constant factor for the perspective

23

screenbuffer, xres, yres
starsDraw() finally
iterates over the number of stars (7000)

and for each star

apply z-movement based on time with boolean clipping

project x/y based on a floating point perspective factor derived
from 1/z *variable factor

determines a pixel-colour based on z

adds that colour to the screenbuffer if the pixel is inside the x/y/z
box

upon exit, deinitDemo() is called, which

calls starsRelease() - an empty function/stub

frees the tempBuffer that contained the screenBuffer and some safety
margin

The resulting effect is a classic, albeit simple starfield. It doesn’t rotate or even
just move in different directions. All of this could be added, if needs be. But we
recommend you to go on and just take this as an example of a typical project
setup.

If you now wanted to compile the stars for Amiga, you would:
open a console window on PC
to the folder
run
And then to run it on the Amiga, you would:
to the folder on Amiga
run

For this simple project, which doesn’t load any external data-files, you could
actually also run it from the folder. But as soon as you want to load data
(which we put in by convention), you would need to make sure you run
your executables from the right folder.

This example loads in and displays a picture that has been written in the stan-
dard GIF file-format.

24

Open, configure, build and run from the folder

You should be presented with a picture in 320x180 resolution and 8-bit
colour-depth

7 frame: 381 [60 fps] [250 colors]

Figure 6.2: Picture project (artwork by Helge/Haujobb)

The effect simply loads a picture in GIF-format which can be created with
standard tools like Photoshop or Pro Motion. This is a lot easier and less
time-consuming than always employing a graphics converter program.

The control flow of this example is the same as in the previous example stars. So
upon init, the pictureEffectInit() function is called, which calls gifL.oad() with

the filename

a pointer (&picture) to where the pointer to the loaded and decoded pic-
ture should be stored

note that GIF is an 8-bit format with up to 256 colours

picture is thus defined as unsigned char*

25

pointers to the int variables w & h which will store width and height of
the decoded image

a pointer to an array of 256 unsigned int to store the image palette

Finally, pictureEffectInit() also copies the pointer to the loaded image palette
to g_currentPal, which can be accessed from main.c in function drawDemo().
Here, the palette brightness will be calculated with a simple time-based function
that makes the image fade in and out smoothly on a sine-wave. Note that the
standard brightness for paletted image is 256. In this example it is just going
slightly above that for an exaggerated effect.

If you run this example on the Amiga (like the stars example), you will notice
that the background colour around the image is not black and thus also fades
in and out. This is often not the desired effect. To fix it, we need to have look
at the palette.

£ color Palette - Edit/Move Colors im 32 % color Palette - Edit/Move Colors

Dﬁ--

Figure 6.3: Sorting the picture palette with the Pro Motion NG palette editor

Tools like Photoshop are very good for all sorts of image manipulations and
can also be used to save in the GIF-format. But it does not sort the colours in
the way we would prefer it, i.e. keep colour 0 dark. Photoshops’ palette editor
is also below standard. Thus we will use a different PC-based tool to fiddle with
the palette: G from https://www.cosmigo.com/. The available
free version is enough for this excercise. So download and install it, then:

Open the image “data/helge-haujobb.gif” by selecting menu

You should see the image and the palette-editor (as in left).
If not, press F12 to open it.

Now press the button in the palette editor and select

26

https://www.cosmigo.com/

Ok, so the colors are sorted now, but from brightest to darkest. Your
palette should look like in middle.

But the image still looks odd.

Press the button in the palette editor, or select menu

To have then have the palette sorted from darkest to brightest we have to
use flip function now)-

Your palette should look like in right, as desired.
Press , again.

You can save the image, reload the Amiga executable without compiling it again,
and the border should stay dark.

This example shows a typical movetable effect in 320x180 pixel resolution and
8-bit, colour-depth.

Open, configure, build and run from the
folder

You should be presented with an effect in 320x180 resolution and 8-bit
colour-depth

W7 frame: 3203 [80 fps] [252 colors] - [m] X

Figure 6.4: Movetable effect and underlying texture (texture by JCS/Haujobb)

27

The effect uses a texture of size 256x256 which is loaded from a GIF file, like
in the previous example. Furthermore, it uses a movetable which is generated
using trigonometric functions and finally uses those two components to build the
screen by obtaining per pixel texture coordinates from the movetable, moved by
a smoothly animated x- and y-offset on a sine-wave. The movetable is exactly
twice the size of the screen, so 640x360 in this case, and represents a tunnel
shape. Other shapes are possible. Let’s look at some details.

If you look at function moveTableInit() from movetableeffect.c you will see how
the texture is loaded and the function to build the table is called.

Just after the gifLoad() function is a tgaLoad8() function with the same
signature, which loads the Targa Image File format TGA. Targa is supported
by Photoshop and other tools. It is usually uncompressed and loads faster than
GIF. The bigger file-size of TGA is compressed away when you bundle your
demo in a compressed archive. Furthermore, Targa files also support higher
colour depths; a feature that will come in handy when you work with true
colour screenmodes. As an exercise, you could:

provide a file called texture.tga in 256x256 pixel size and 8-bit colour depth
comment out the gifLoad() line and comment in the tgaLoad8() line
the effect should work as before

moveTablelnit() then allocates some memory and calls buildTunnel(), one of
three supplied build-functions, to fill that memory with movetable data.

28

Try out the other two!

This chapter pulls all the strings together and provides a complete example
demo that comprises of the previously discussed component with some added
streaming music. The effects’ parameters are controlled via the excellent Rocket
sync-tracker. Although this approach to demo-syncing is quite common in the
PC-scene for many years, it is still fairly unknown in the Amiga-scene and only
used by very few demo-makers, like e.g. Loonies. In Haujobb, we have started
using Rocket when developing the Beam Ridersdemo. We have previously spo-
ken about our demo-making process in our Evoke 2018 talk Modern Amiga
Demo Cross-Development (YouTube). With the release of our Amiga demo
framework, we are now publicly sharing a complete and documented example
of how to sync your Amiga demos with Rocket. This is how we did it. And now
you can do it, too!

Open, configure, build and run from the
folder

The demo will refuse to start with the error message: “Could not connect
to rocket editor!”

This is because the source-code of hellodemo is configured

to require the Rocket editor on the PC

and to play the demo from the stored parameters on the Amiga.

If you wanted to quickly check the example demo on the PC, you thus need to
configure the source-code to not require the Rocket editor on the PC. This is
done with the define in line 1 of main.c. If it is defined, the
demo will load the files from the /data directory and then play the demo
with those parameters. So uncomment that define and run hellodemo again. It
should start and show several effects timed to some music by Muffler.

When you are done with that, comment that define-line out again, as you
usually would want to work in edit mode on PC.

Note: the Amiga build gets the SYNC PLAYER define injected via the
makefile ((-DSYNC PLAYER in CFLAGS, currently in line 40, c.f. section 2.1
in [VBCC docs).

29

https://www.pouet.net/prod.php%3Fwhich%3D71976
https://www.youtube.com/watch%3Fv%3Ds1lVS4tW33g
https://www.youtube.com/watch%3Fv%3Ds1lVS4tW33g
http://www.ibaug.de/vbcc/doc/vbcc.pdf

Rocket track names are your interface to your demo. For a typical demo, you
will quickly have dozens of track names, so it is a Good Idea TM to name them
properly. They also need to operate within certain limits:

keep names short, meaningful and lowercase
all Rocket tracks are Floats by default
but you can cast them e.g. to Int within your code

Furthermore they are also saved to disk with filenames comprising of a
certain scheme (we chose: sync_*.rt, where * is effectname_ variablename,
e.g. sync_movetable(2) time.rt) that will have to fit within the Amiga
Fast File System filename-length limit of 30 chars.

From our own experience we can propose the following:
part : should be used as an Int to keep track of the currently visible part

brightness : Int for the current palette brightness (if applicable), 0 means
black, 256 is normal, >256 brighter

effects should expose their name plus their part number in brackets, e.g.
movetable(2), as some kind of namespace

effect variables are are appended to this namespace-name with a colon
(“:77)

see the code from getSyncTracks() from main.c as an example

Adhering to such a scheme will make your life easier when wiring up the internals
in your code and when timing your demo. So better stick to it.

30

— from
Rocket GitHub page.

To get started with using the Rocket editor, download the latest official
binaries from the GitHub Rocket releases. The archives come readily bundled
with the required libraries, so just unpacking and starting should
work. Since its inception, several ports of the Rocket editor have appeared. All
of them are listed on the Rocket GitHub page. We personally only worked with
the original editor, but also quickly tested the alternative OpenGL editor| and
can confirm that it works.

On Windows, the Windows firewall would usually come up when starting
your chosen editor for the first time. Just allow it to pass, as the editor will
need to communicate with the demo via network.

hellodemo.rocket - o x|

File Edit
default picture(0) stars(1) movetable(2)
e frezd b

la.ee

o1 Row 205, Col 0 924918 ramp

RBONODOE /o wlea BB 7 seeacvavmcsn h 0

Figure 7.1: Rocket editor (left) and hellodemo (right)

Ouce you started the editor, you can recompile (without SYNC PLAYER
defined) and run the hellodemo project. You should immediately see some magic
happen in the editor. As the demo and the editor already communicated about
the available sync tracks, the editor should show them neatly organised in tabs,
here: , , , . The sync tracks still have no
keyframes and interpolation methods assigned, yet. This is the typical state of
how you would start with a clean slate once you wired up your Rocket variables
in your code.

To get started with our example, load the provided file

31

https://github.com/rocket/rocket
https://github.com/rocket/rocket/releases
https://github.com/rocket/rocket
https://github.com/emoon/rocket

from /data/hellodemo into your editor. This should populate the sync-tracks
with data (see figure [7.I). You can now start and stop playing the demo by
pressing <SPACE> in the editor.

Note: This section is copied from the official Rocket documentationl

The Rocket editor is laid out like a music-tracker; tracks (or columns) and
rows. Each track represents a separate "variable" in the demo, over the entire
time-domain of the demo. Each row represents a specific point in time, and
consists of a set of key frames. The key frames are interpolated over time
according to their interpolation modes.

Each key frame has an interpolation mode associated
with it, and that interpolation mode is valid until the next key frame is reached.
The different interpolation modes are the following:

: This is the simplest mode, and always returns the key’s value.
: This does a linear interpolation between the current and the next
key’s values.

: This interpolates in a smooth fashion, the exact function is what
is usually called "smoothstep". Do not confuse this mode with splines; this only
interpolates smoothly between two different values, it does not try to calculate
tangents or any such things.

: This is similar to "Linear", but additionally applies an exponentia-
tion of the interpolation factor.

Some of the Rocket editor’s features are available through
the menu and some keyboard shortcut. Here’s a list of the supported keyboard
shortcuts:

Wiring up your code’s internal variables to Rocket so that they can be modified
over the network connection with the Rocket editor is at the heart of working
with Rocket from a coder’s perspective. It is a straight forward process that
you will quickly embrace once you know what needs to be done.

All of this is usually happening in your demo’s main.c - the effects do not
know about Rocket at all. For the purpose of this write-up, we are just handling
the case of the stars effect. All other effects are handled in the same way and
you can follow everything in full detail in hellodemo’s main.c.

Include Rocket definitions from:

32

https://github.com/rocket/rocket

Up/Down/Left /Right Move cursor
PgUp/PgDn Move cursor 16 rows up/down
Home/End Move cursor to begining/end
Ctrl+Left /Right Move tracks
Enter Enter key frame values
Del Delete key frame
i Enumerate interpolation mode
k Toggle row-bookmark
Alt+PgUp/PgDn Go to prev/next row-bookmark
Space Pause/Resume demo
Shift+Up/Down/Left/Right Select
Ctrl+C Copy
Ctrl+V Paste
Ctrl+Z Undo
Shift+Ctrl+7Z Redo
Ctrl-B Bias key frames
Shift+Ctrl+Up/Down Quick-bias by +/- 0.1
Ctrl+Up/Down Quick-bias by +/- 1
Ctrl+PgUp/PgDn Quick-bias by +/- 10
Shift+Ctrl+PgUp/PgDn Quick-bias by +/- 100

Table 2: Rocket editor shortcuts

For working with Rocket, you always need a

You would then define multiple

want to animate:

Tracknames should start with “rt_”.

Your internal sync_tracks are made known to the Rocket editor via the
function. Its invocation is also the place to provide the names that appear in
the editor and on disk for the saved tracks.

done in getSyncTracks():

, one for every variable that you

33

It is suggested that you name them ac-
cording to their namespace and variable names, e.g. rt part or rt star time.

In hellodemo’s main.c this is all

Depending on the definition of SYNC PLAYER, sync get tracks will either
connect to the editor, or try to load the tracks from disk.

Getting variables out of Rocket is done via the function. It takes
the desired trackname and row-position as input and returns a Float. The
calculation of is based on the play-time of the music. Implementation

details can be found in drawDemo() and also in updateDemo().
The code snippet below shows how we get the variables for the stars effect:

As per our convention, variables from Rocket that hold:
values (the default) should be preceeded with

values (requiring an explicit cast) should be preceeded with

Once we have the time-based values for our variables from Rocket, we can feed
them to our effects. As written above, the effects to not know of Rocket. They
just need to get their parameters when calling their render-function. All effects
take the variable as their first and most imporant parameter. They are
required to render a frame according to

The stars effect additionally takes a perpective factor as a parameter.

34

As previously implicitly covered (6.2.2), effects are expected to have typical
functions when working our way.

More explicitly, the minimum required functions when coding single effects
are:

Init, Render and Release should be clear. The Palette function is required, as
the current palette will be used outside the scope of the effect, e.g. to support
setting the brightness.

To avoid name-clashes, it is good practice to preceed those names with the
actual effect name, e.g. starsEffectInit().

When putting the effects together as a demo, you need one additonal func-
tion:

This is a very short function that basically sets the screenmode, palette and
dimensions (xres/yres) everytime an effect is called for the first time. This
is required because you will want to have different effects that might run in
different screen modes. Here is how the starsEffectOn() function looks like:

The is not always used, but always required by convention.

and in this example are for a typical 16:9 low-res screen. sets

up the display for that mode (see for a list of available modes) to work

from that frame-buffer and with the palette pointer obtained from
The initial brightness is set to 0 (black). Finally, the palette

pointer is stored in the global variable

When putting your effects together as a demo, you would naturally call their

and functions from the respective functions in the demo’s main.c
(here: and). Actually, in hellodemo, the init-functions
are all grouped in another function called . This will become useful

later when starting to use the file-watcher and auto-reload functionality.

35

Then, when it is time to draw a frame, the demo needs to figure out which
effect (part) needs to be called, and if it had already been shown in the previous
frame. If not, the part has to be enabled. This is done like this:

When it is verified that the part is enabled, it can be drawn like this:

Finally, at the end of the draw function, the prevPart variable it prepared for
the next frame, and the current frame is displayed.

36

triggers the chunky to planar conversion, i.e. the conversion of
the byte-chunked (of 8 bit colour depth, as set previously with
wosSetMode) into 8 seperate bitplanes to be displayed by the Amiga AGA
chipset. Due to the slow speed of the chip memory, the Amiga will spend almost
an entire frame for this conversion in a typical low-res resolution. It is generally
unrealistic to expect to be able to draw 50 frames per second (FPS). Depending
on the effect complexity, the target hardware, and the frame’s content, you
would often be able to reach a framerate in the range of 25 to 40 frames per
second. But a stable motion at a fixed framerate looks smoother than one with
varying framerate. Therefore, wosDisplay takes a frame-lock parameter:

0 : no frame-lock, i.e. run as fast as possible (possible faster than 50 FPS
in very low resolutions)

1 : frame-lock to every frame, i.e. 50 FPS max
2 : frame-lock to every other frame, i.e. 25 FPS max

While 50 FPS can be achieved with some 160x90 screenmodes, you would gen-
erally want to aim for 25 FPS with low-res 320x180 screenmodes.

While most screenmodes will not update in every frame, there is a possibilty to
run certain parts of the code at 50 FPS intervals by putting it in the provided

function. This is triggered by the vertical blank interrupt (VBI)
from and can be used for making quick changes, e.g. to the
colour palette when fading.

37

The Haujobb Amiga Framework has been developed by Hellfire and Noname.

low-level hardware API by Noname
high-level PC API counterpart by Hellfire
standard code in by Hellfire

examples by Noname and Hellfire

documentation by Noname

Standing on the shoulders of giants. With little modifications here and there.
system-friendly hardware startup by Piru
system-friendly interrupt example by Comrade J
Kickstart v39 sprites fix by Comrade J
Speedychip by Piru
C2P routines by Kalms

partially modified with inline-saturation code based on an idea from
Blueberry by Hellfire and Noname

Further WickedOS components (currently not exposed through API)

Tracker Packer 3 by Crazy Crack
The Player 6.1 by Guru
old AHX/THX by Dexter
AHX by Dexter
Profiler by Bartman
CRM decruncher by Thomas Schwarz
ADPCM player in Hello Demo by Kalms (Amiga) and Ian Luck (PC)

Rocket sync-tracker and library by Kusma et al.

38

How would life be without artists? The following pieces have been bundled with
the release of our framework:

picture by Helge
picture by Acryl
movetable texture by JCS

music in Hello Demo by Muffler

With Visual Studio Community 2017 we have witnessed missing standard head-
ers, resulting in compilation problems even for the simplest programs such as
the hello world .Unbelievable as it sounds, this behavior is also documented
on Stack Overflow, along with the solution in answer #1.
To solve this problem, you need to rerun the Visual Studio Installer and se-
lect under
Then restart you IDE, and rebuild your project.

This is a collection of notes about the WickedOS-layer of our Amiga Framework.
Normally, you should not need to study this, but you are very welcome to.

If you are feeling nostalgic or curious, you can assembly and run a built-in ex-
ample of WickedOS in ASM-One or Devpac on the Amiga! The visual outcome
will be the same as that described in section [2:3 on page 7} Of course, it doesn’t
matter if you are using real or emulated hardware for this.

If you coded on Amiga before, chances are that ASM-One is already installed
and that you know how to use it. The minimum supported version is 1.29. If
you do not have at least this one, just either:

download ASM-One from http://aminet.net/package/dev/asm/ASM-One,

or get ASM-Pro from http://aminet.net /package/dev/asm/AsmProl.18src,
which is an improved and open-sourced version

39

https://stackoverflow.com/questions/42777424/visual-studio-2017-errors-on-standard-headers
http://aminet.net/package/dev/asm/ASM-One
http://aminet.net/package/dev/asm/AsmPro1.18src

or grab my copy of ASM-One v1.29.
Set the WOS: Assign before you start ASM-One.
1. assign “WOS:” to where you unpacked WickedOS
2. list WOS:wos_ v#7 (should list the main file, currently v1.62)
3. Consider putting the assign from line 1 into s:user-startup (optional)
Then test WickedOS’ built-in example AGA-screen from within ASM-One.

1. Start ASM-One from a Shell (This is important, as starting it from an
icon will cause you a lot of trouble, as previously discussed on Amiga
Demoscene Archivel.)

2. Give it some public memory

(a) ALLOCATE Fast/Chip/Publ/Abs>p
(b) WORKSPACE (Max. XXXXX) KB>1000

(c) Note: ASM-One from Aminet (v1.48) seems to expect an assign
“Sources:” at startup. If you don’t have it, either:

i. assign “Sources:” to somewhere useful, or just to “Ram:” for
testing

ii. orin Asm-One go to Preferences->Environment and change “De-
fault Dir:” textbox value to an existing directory or empty it

“'77

iii. or restart Asm-One with to get the memory prompts again.

3. Menu->Assembler->Preferences->Assembler

(a) CPU 68020
(b) Check “FPU Present”
(¢) Uncheck “UCase = LCase”
(d)
)

(e) Press “Save”

Uncheck “; Comment”

4. Type “v wos:” (to set the working dir)
(a) v (to list the dir, just to confirm and refresh your memory)

5. Type “1” (read) and select the latest version of wos:wos_v#7?.s

6. Press <ESC> to get into edit-mode

(a) Remove the “” before WTEST in line 3
(b) Press <ESC> again to go back into command line mode (“>”)

40

http://www.dig-id.de/amiga/asmone129.lha
http://ada.untergrund.net/%3Fp%3Dboardthread%26id%3D144%26page%3D1
http://ada.untergrund.net/%3Fp%3Dboardthread%26id%3D144%26page%3D1

7. Type “a” (assemble), and ASM-One will assemble your source.

8. Type‘§” (jump), and you should see a nice picture and listening to a tune.
(If it didn’t work, you might not have AGA, 68020+ and FPU in your
machine. Please note that WickedOS does not strictly require neither
AGA nor an FPU, but this configuration is the baseline for the AGA /060
demos that we want to build with it.)

Devpac was probably the best allround commercial assembler development pack-
age for the Amiga. If you want to give it a go, either use your existing instal-
lation or get a copy from the English Amiga Board file server| (files “Devpac
v3.04#7.adf” in /Commodore Amiga/App/Disk/).

Once installed:

1. Project->Load the WickedOS main-file wos_v1.#7.s
2. Remove the *;” before WTEST in line 3

w

. Settings->Assembler->Options

(a) Processor: 68020
(b) Check “68881/2 Maths Coprocessor”

4. Program->Assemble
5. Program->Run

Check the manual to learn about hotkeys, and the really powerful debugger
“monam”. The manual is available| at https://computerarchive.org/, which host
lots of other Amiga manuals, too, in |/files/comp/applications/amiga/manual.

You tested that the supplied WickedOS-sources directly assemble and work
on the minimum supported assembler, ASM-One (without using intermediate
object-files and linking). This provides the ground for the following steps with
vasm and vlink.

If you were planning to make extensive use of WickedOS with ASM-One or
Devpac on Amiga, you might be interested in setting the WOSASSIGN-flag.
This would allow you to set your working directory to somewhere else and then
just include WickedOS from wos:newestwos.s, which would then find all of its
files from the WOS: assign.

But even if you don’t plan to use ASM-One, you must at least provide the
assign to INCLUDES: if you plan to assemble WickedOS on Amiga.

todo

41

http://eab.abime.net/showthread.php%3Ft%3D43633
https://computerarchive.org/files/comp/applications/amiga/manual/Devpac%203%20-%20Manual-ENG.pdf
https://computerarchive.org/
https://computerarchive.org/files/comp/applications/amiga/manual/

Adding a new C2P-based screenmode to WickedOS requires a few modifications
at several places in several files. As I tend to forget at least one place for myself,
this write-up is at least for my own reference.

Hint: you can set wtest flag in the main wos_v#7.s source for setup and
display a simple screen. Note: XY is to be replaced with a running number,
eg. 19

1. in _wosbase:
(a) mXY: dc.l 0,0,0,0 ; add some comments as well
2. in WOSInit:

(a) add an init block for your c2p-mode after the last one (.m180ok at the
time of writing)

3. in _Display:
(a) add macro-line " DisplayM1 XY" in first block
(b) add macro-line " DisplayM2 XY" in second block
4. in _RefreshDisplay:

(a) "add cmp.b #XY,d0" and "beq .mXY"

(b) provide fitting code at .mXY (copy from appropriate 8 bit or ham-
based examples above)

5. in SetModeAndColors:

(a) add macro-line "_SetMaCM1 XY" in first block
(b) add macro-line "_SetMaCM2 XY" in second block

(c) (for ham-modes) add special cmp/beq cases at ".m0"

42

6. in _SetMode:

(a) add macro-line " _CallSetModeMac XY" in first block
(b) add macro-line "_SetModeMac XY" in second block

7. in _SetColors:

(a) add macro-line "_SetColM1 XY" in first block
(b) add macro-line " _SetColM2 XY" in second block

8. in Modes:

(a) provide fitting block which adds exactly one bit to MODES (double
the number of the previous) e.g.

i. (this bitwise-logic is why there are currently a maximum of 32
modes supported)

(b) include you binary code and provide label mXYc2p

i. (code is expected to have jump table like all the other modes -
init at 0, c2p at 4, etc..)

1. in struct after "Define the structure" comment

(a) add four rs.l 1 entries to structure for modeXYinit, modeXYc2p,
modeXYexit, modeXYptr

2. after "Set up the screen-dimensions" comment

(a) provide fitting MakeMode line to describe your screen dimensions

(b) (or alternative definitions of modeXYsize .. modeXYsize)

1. at EOF

(a) provide fitting copperlist named CopmXY, also with labels sprmXY
and colmXY with appropriate space

1. Finally you need to provide a fitting c¢2p-routine as a PC-relative plugin.
Check the provide sources and do likewise.

(a) name the file as "mode#7?.s"

43

1. add filename to

Advanced Framework Functions

profiler
file-watcher
cache simulator

palette tool
run

visual studio command prompt

“‘nmake install” to get the required libraries to the folder
mixasm
ace make all

Audio, getting your music in

44

music dependencies

rocket bpm
rocket rpb
rocket row rate

stream player

bass on PC
Kalms ADPCM on Amiga

Audio ADPCM Saving and determining BPM
Screenmodes

list of

example
Literature

https://www.doc.ic.ac.uk/lab/cplus/cstyle.html

45

	I Setup
	Guide to the document
	Resources
	Quickstart (TL;DR)

	Assembler and Linker Setup
	

	
	GNU make
	

	PC-Prototyping Environment
	Visual Studio
	

	II Demomaking
	Single Examples
	Hello World
	
	

	
	
	Movetable
	
	

	Demo Example
	Hello Demo
	

	

	III Annex
	Credits
	Framework
	Third party code
	Artwork

	Trouble-Shooting
	Missing Standard Headers

	WickedOS
	Built-In Test
	With ASM-One
	
	Recap

	List of Screenmodes
	How to add a new screenmode

